Coalescent embedding in the hyperbolic space unsupervisedly discloses the hidden geometry of the brain

نویسندگان

  • Alberto Cacciola
  • Alessandro Muscoloni
  • Vaibhav Narula
  • Alessandro Calamuneri
  • Salvatore Nigro
  • Emeran A. Mayer
  • Jennifer S. Labus
  • Giuseppe Anastasi
  • Aldo Quattrone
  • Angelo Quartarone
  • Demetrio Milardi
  • Carlo Vittorio Cannistraci
چکیده

IRCCS Centro Neurolesi “Bonino Pulejo”, Messina, Italy. Biomedical Cybernetics Group, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Center for Systems Biology Dresden, Department of Physics, Technische Universität Dresden, Dresden, Germany. Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy. Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, 88100, Italy. Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro, 88100, Italy. G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, United States Department of Medicine, UCLA, Los Angeles, CA, United States UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, United States UCLA Brain Research Institute, Los Angeles, CA, United States

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Extension of Poincare Model of Hyperbolic Geometry with Gyrovector Space Approach

‎The aim of this paper is to show the importance of analytic hyperbolic geometry introduced in [9]‎. ‎In [1]‎, ‎Ungar and Chen showed that the algebra of the group $SL(2,mathbb C)$ naturally leads to the notion of gyrogroups ‎and gyrovector spaces for dealing with the Lorentz group and its ‎underlying hyperbolic geometry‎. ‎They defined the Chen addition and then Chen model of hyperbolic geomet...

متن کامل

Metric and periodic lines in the Poincare ball model of hyperbolic geometry

In this paper, we prove that every metric line in the Poincare ball model of hyperbolic geometry is exactly a classical line of itself. We also proved nonexistence of periodic lines in the Poincare ball model of hyperbolic geometry.

متن کامل

Minimum curvilinear automata with similarity attachment for network embedding and link prediction in the hyperbolic space

The idea of minimum curvilinearity (MC) is that the hidden geometry of complex networks, in particular when they are sufficiently sparse, clustered, small-world and heterogeneous, can be efficiently navigated using the minimum spanning tree (MST), which is a greedy navigator. The local topological information drives the global geometrical navigation and the MST can be interpreted as a growing p...

متن کامل

Universal Approximator Property of the Space of Hyperbolic Tangent Functions

In this paper, first the space of hyperbolic tangent functions is introduced and then the universal approximator property of this space is proved. In fact, by using this space, any nonlinear continuous function can be uniformly approximated with any degree of accuracy. Also, as an application, this space of functions is utilized to design feedback control for a nonlinear dynamical system.

متن کامل

An extended feature set for blind image steganalysis in contourlet domain

The aim of image steganalysis is to detect the presence of hidden messages in stego images. We propose a blind image steganalysis method in Contourlet domain and then show that the embedding process changes statistics of Contourlet coefficients. The suspicious image is transformed into Contourlet space, and then the statistics of Contourlet subbands coefficients are extracted as features. We us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017